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Absiraei. .We use ihe concepi of random muiiipiicaiive processes io k i p  describe zid 
understand the distribution of the harmonic measure on growing fractal boundaries. The 
Laplacian potential around a linearly self-similar square Koch tree is studied in detail. 
The multiplicative nature of this potential, and the consequent multifractality of the 
harmonic measure arc discussed. On prefractal stages, the density d p  of the harmonic 
measure and the corresponding HBlder CL =-in d p  are well defined along the boundary, 
except in the folds where the tangent is undefined. A regularization scheme is introduced 
to  eliminate these local effects. We then consider the probability distributions P(a) d o  of 
successive stages, and discuss their collapse into anf(a) curve. Both the left- and right-hand 
sides of this curve show good convergence. Other studies indicate that, for DLA, the 
right-hand tail does not converge. A brief comparison is made between the multifractality 
of these two cases. 

1. Introduction 

This paper investigates the Laplace potential around a linearly self-similar Koch curve 
K, which is the limit of the well known recursive Koch construction illustrated in figure 
1. The limit boundary subdivides into trees, each of which is linearly ('exactly') 
self-similar [ 1,2], with the fractal dimension D =log 5/log 3 = 1.465. 

As intended, this boundary bears a general resemblance to a cylindrical diffusion- 
limited aggregate (DLA) [3]. More precisely, the successive prefractal approximations 
of K bear a resemblance to scaled-down pictures of successive stages of growth of 
DLA. However, one must keep in mind that K is very much simpler than DLA, because 
DLA clusters are not linearly self-similar, even in a statistical sense. Therefore, we do 
not expect our observations to be descriptive of DLA, but only to provide a helpful 
background against which the complexities and the specificity of the properties of DLA 

can be assessed. Of course, the dimension D =  1.465 is far below the value D = 1.7 
[3,4] for DLA, but this difference is not significant for our purposes. 

Much of the work to be reported concerns the Laplacian potential around K, and 
its normalized harmonic measure, that is, its normalized gradient. Here, the natural 
tool is the concept of the multifractal [5-71, including a function ordinarily denoted 
byf(n) .  There is a naive belief that multifractal analysis reduces to the evaluation of 
f(u), but we believe that knowingf(a) is not enough. A more detailed knowledge of 
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Figure 1. The geometric cascade generating the square Koch tree. Each line segment has 
a unique base 5 coding. When applicable, the orientation of the digits are taken such that 
segment 0 has larger harmonic measure than segment 4. For example, in an orientation 
induced on tracing the curve, the segment coded 0.30 would have been 0.34. A cavity is 
coded by its presegment. Thus, cavity 0.1 is the stmdure formed by all the segments whose 
expansionsstanwitheither0.11 ., ., 0.12...or0.13 . ... Thelimitsethasfradaldimension 
D = l n  5/h3 

the geometry is necessary. In particular, a basic fact is that the only fractals one 
understands thoroughly are those obtained by recursive schemes; similarly, the only 
multifractals one understands really well are those obtained by a multiplicative 'cascade 
process', of a kind L F Richardson has postulated in turbulence [l]. As is the case for 
every formalism, the formalism of multifractals applies in a wider but ill-defined 
context; a central issue is how close a multifractal is to being multiplicative. 

The non-random binomial and multinomial measures on [0,1] are examples of 
exact multiplicative measures [E] which have been studied long ago by mathematicians 
of the school of A S Besicovitch. The basic step is to subdivide [0, 11 into b intervals, 
then repeat the subdivision recursively, each step yielding an increasingly fine-grained 
measure. Random generalizations have been investigated by one of us (BBM) around 
1970 [5]. In earlier studies [9,10] we have found that it is very fruitful to consider the 
harmonic measure of DLA as being multiplicative, but we had no direct test of the 
validity of this assumption. This motivated us to investigate to what extent it is also 
useful to consider the harmonic measure fi  around our Koch trees as multiplicative. 
Numerical and analytical studies [ll-131 of the harmonic measure on linearly self- 
similar trees show that this measure is a restricted multifractal [5-7,14, 151, in the 
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sense that the distribution of (I is described by a curve f(a) shaped like the symbol 
n . A connection between multiplicative processes and this restricted form of multifrac- 
tality, which is characteristic of the harmonic measure on linearly self-similar sets, has 
been assumed and used in [9,10,13,16,17]. 

In demonstrating the existence of an underlying multiplicative process, the present 
paper goes beyond an evaluation off(a) ,  and investigates the whole Laplacian potential 
field around the square Koch tree K. Here, a counterpart to the recursive subdivision 
of [0,1] is the recursive cascade construction illustrated in figure 1. We follow the 
potential itself and the harmonic measure as our Koch prefractal tree is progressively 
refined by the addition of increasing numbers of progressively smaller 'bays'. The move 
from the potential to the harmonic measure involves many surprisingly subtle points, 
which we felt deserved to be faced squarely, and are discussed in later sections. 
However, a bit of 'hand waving' suffices to describe a few basic facts, and to support 
the idea that the measure is approximately multiplicative. 

Another issue we have dealt with concerns the definition of the harmonic measure 
that is to be used in the description of its multifractality. In theory, the density of the 
harmonic measure is proportional to the gradient of the continuum Laplacian potential 
on the boundary. However, following the pioneering use of the Laplacian in this 
context [18, 191, most numerical and analytical works on DLA have dealt with a spatially 
discrete Laplacian potential. Setting the potential at the boundary to q4 = 0, these works 
approximate the non-normalized harmonic measure by the potential at the nearest 
neighbours of the boundary. The resulting 'site probability' is used to estimate the 
harmonic measure of that small portion of the cluster's boundary which is nearest to 
the site and has a length about the size of the lattice constant. 

In the context of the discrete potential, these site probabilities seem natural, but 
in our context they demand closer examination. While discretization is a necessity for 
numerical analysis, the quantities used to characterize the harmonic measure on a 
boundary should not depend on the lattice constant. Unfortunately, the site probabilities 
do show such dependence, and therefore are inappropriate for an intrinsic description. 
The alternative method we use starts with the density of the harmonic measure. 
On-lattice DLA [3, 181 establishes an artificial coupling between the particle size and 
the lattice constant associated with the discrete Laplacian. From that viewpoint, this 

and study of the harmonic measure on off-off-lattice DLA [20,21]. 
A n l : m + n  i o . ~ . . a  r h o +  .I~D -.:on O P P ~  irmln.ron+ It i r  hnixmiinr r m i r i o l  fnrthn A n c r . i n t : n n  
UCIICULb ,.,.,"1LLl'.L "*'Y'"*L'LYJ Y I . . L L l 1 1 1 * . * . U . . L .  I L L I , I . " " u - l . (  "."I.Y.."L %.".,.,1.A.pL'".L 

2. Visualization of the multiplicative cascade 

The method of zebra rendering is described in the caption of figure 2. The left-hand 
side of figure 2(d) shows a zebra rendering of the Laplacian potential field around 
the square Koch tree K. The hierarchical structure of the fjords in this fractal curve is 
clearly visible. References [9,20] show similar zebra renderings of the potential around 
DLA boundaries. 

Let us inspect figures 2(a) - (  d )  carefully. One first notes that the larger-scale features 
of the potential field, that is, the features defined by a certain level of the geometrical 
cascade, are left virtually untouched by the geometric details added by the next step 
of the cascade. That is, the stacks of zebra stripes are to a large degree unchanged 
when a main fjord is perturbed by subfjords half the previous size. This fact is in full 
agreement with the Carleson-Jones method for estimating the extrema1 length with 
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Figure 2. Zebra rendering of the Laplacian potential around different prefractal stages of 
!he %!f-sh!i!ar square Koch tree. The lobanthm of the potential is linearly binned in black 
and white stripes. Each stripe is  a factor -2 drop in the potential. Thhe geometry has been 
turned upside down to emphasize the growing tree. Geometric detail is added by the 
following step in the geometric cascade, but it will leave the larger scales of the zebra 
pattern untouched. The result is a local addition of stripes, which i s  equivalent to a local 
multiplication of the measure. Thus this i s  a visualization of the multiplicative process 
enforced on the Laplacia" potential field by a self-similar boundary. See also figure 3. The 
left half of d is n, = 5, the right half is nc = 1. 

the help of discs [22,23]. Thus, the number of zebra stripes from a point outside the 
set to the entrance of fjord 0.1 (as depicted in figure 1) remains approximately the 
same before and after the addition of fjord 0.1. In terms of the potential field around 
the boundary, the addition of fjord 0.1 'grafts'an extra branch onto an already existing 
tree of earlier-generation zebra stripes. 

2.1. The complementary Laplacian tree 

Leaving the prefractals of K aside for a moment, let us examine how the zebra patterns 
change as one moves along figures 2 ( a ) - ( c ) .  They reveal a new complementary 
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Laplacian cascade. It is so regular that, knowing the shapes of stages a and b, one 
could almost guess the shape of stage c. 

At each new stage of this complementary cascade, the two-dimensional zebra- 
rendered surface of the Laplacian tree is enlarged. One observes additional zebra 
stripes that were present in the preceding stage, but were so close together that our 
illustration could not separate them. This accretion of new stripes is additive in terms 
of the zebras based on the logarithm of the potential, hence is multiplicative in terms 
of the potential itself. The total number of zebra stripes needed to reach a newly added 
smallest Laplacian branch depends on the location of that branch. For example, inspect 
one of the smallest most recently added fiords in stage c. The unnormalized Holder 
a =-In f i  is proportional to the number N of stripes between this fjord and the bottom 
of the figure. Therefore, the total harmonic measure on the surface of this fiord is 
proportional to exp(-N), where the constant of proportionality depends upon the 
width of the zebra stripes used in rendering. 

The multiplicative process appears in its most elementary form in the subset of 
fiords whose expansion, explained in the caption of figure 1, only involves the digits 
1, 2 and 3. If the Holder at the entrance of 0 in figure 1 is denoted by a(O), count the 
extra number of stripes V in figure 2(c )  needed to reach these entrances: a(O.l)= 
LI (0.3) = a (0) + 4 and a (0.2) = a(0)  + 6. Similarly, a (0.22) = a (0) + 6 + 6 and ~(0.12)  = 

factor in the potential. 
n(0)+'!+5. This extri? !Ember ef stripes Y =  -!ag .M, where M is the m??!!ip!ica!ion 

L 

t 
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Figure 3. A different illustration of the multiplicative process discussed in figure 2. From 
top to bottom one finds, stretched out and mapped to [0, I]. the boundaries of the fjords 
0.2, 0.1 and 0, with their harmonic densities normalized to 1. The normalized densities an 
0 and 0.2 ace nearly identical. while 0.1 is a bit skew. This is due to the fact that the 
potential is decreasingin goingfromsegment0.1010 0.14. Thisskewnessissmoothcompared 
totheirreguiaritiesinthebasicform(0) ofthedenrity; itaddsanextratouchofcamplicafion 
to the multiplicative process, compared to a simple multinomial multifractai. 
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The subset of fjords characterized by the digits 1, 2 and 3 clearly illustrates two 
important properties. First, the Laplacian potential is multiplicative, hence the same 
is true of the harmonic measure. Second, moving away from the potential to the Holder 
-log ~1 transforms the multiplicative process into addition of random variables. The 
result is that one can use the limit theorems for sums of random variables, a step that 
is essential in the probabilistic theory of multifractals [5,10]. In the case of our potential 
around K, the random variable V = -log M can take the values V = 6 and V = 4 with 
the respective probabiiities f and 5. Such a bounded addend is known to give rise to 
a ‘restricted multifractal’ [2]. 

The fjords that also contain the digits 0 and 4 in their expansion are discussed in 
section 5. 

2.2. Self-similarity of the harmonic measure 

In the case of K, the self-similarity of the harmonic measure is due to the self-similarity 
of the boundary and the scale invariance of the Laplacian. Certain connected subsets 
of the geometry are replicated within themselves on smaller scales. For example, 
consider fjords 0.1 and 0.2 in figure 1, together with their smaller-scale decorations; 
they are scaled-down versions of the main fjord 0. The scale invariance of the Laplacian 
is discussed in detail in section 3; it implies that the harmonic measure is approximately 
the same in each of these replicas, except for a muitipiicative iactor due to screening. 
Figure 3 illustrates this effect by stretching out the boundaries of the main fjord 0 and 
of the subfjords 0.1 and 0.2, together with the density-Holders, and by mapping them 
on the unit interval. The resemblance is evident, as expected. 

3. Scale invariance of the Laplace equation 

Consider the simple boundary shown in figure 4. The two separate square-shaped 
cavities B and B’ in the lower-half plane are related by a translation (a ,  b) and a scale 
transformation B’=hB.  Let +(x, y) be the solution of the Laplace equation 

B’ 

L’ x L’ 

L’= h L  

\” 
$,bj 

FIgure 4. A simple boundary consisting of two separated rectangular fjords, B and B’, 
which are identical modulo a scale transformation A = 2. The Laplacian is solved between 
the boundary, which is set at potential 0 and a horizontal line high above, which is kept 
at potential I (see also figure 5). 
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with boundary conditions + ( B )  = 0, and + = 1 along a boundary far away from K. 
Using the coordinate transformation (x', y')  U (x, y )  = (x'- a, y ' -  b ) / A ,  we see that 
+'(x', y ' )  E c+((x'- a ) / &  ( y ' -  b ) / A )  solves the Laplace equation with boundarycondi- 
tion +'( B') = 0. The constant c depends on the boundary conditions outside the cavities, 
and we will argue below that in this case it equals A. It follows that the potentials 4 
and @', corresponding to two boundaries B and B' which differ by transformation of 
scale, are identical modulo a factor and a similarity transformation of spatial scales. 
This is immediately apparent from the zebra rendering of the potential field in figure 
5 ,  where -log $ has been binned in black and white. The potential is rendered by 
superimposing a 'foggy' background that becomes progressively darker as the potential 
decreases. 

Figure 5. Zebra rendering of the Laplacian potential in the upper part of the boundary in 
figure 4. The zebra stripes result from a linear binning o f  -log 4, where 4 is the potential 
estimated numerically on a square lattice with L =  100. 

4. Density of the harmonic measure 

We begin with a remark concerning the notation we use for the harmonic measure. 
The boundary of our cluster is one-dimensional, hence it can be parametrized by a 
real number f in the interval [0, 11. The measure of the piece of B parametrized by 
the interval [0, I] can be denoted by p( I). Hence, given a piece of B parametrized by 
dt, its measure can be denoted by dp(t) .  A segment [ t ' ,  t"] of the boundary carries 
the measure j:'dp(t) = p ( [  f', f"]). This notation is equally meaningful forthe prefractal 
approximates of K, and for the limit K. For the former, the measure is differentiable 
except for isolated singularities. For the latter, the measure is nowhere differentiable. 

Now we return to our argument. Let the boundary of the cavities B and B' be 
parametrized by arc length, starting from the upper left corner and moving towards 
the upper right one, i.e. B = B ( t ) ,  f = [ 1 , 3 L ]  and B ' = B ' ( f ' ) ,  t'=[l ,A3L], where L 
and L' are the sizes of the respective cavities' edges. At boundary element B ( t )  the 
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harmonic measure dp( t )  is proportional to the absolute value of the gradient of the 
Laplacian potential, which is perpendicular to the boundary, i.e. dp(1) - E ( t ) .  From 
the scale invariance of the Laplacian, E'( t ' )  = ( c / A ) E ( l ' / A ) .  By integrating the density 
dp(  1 )  - E( 1 )  of the harmonic measure along the boundary, we find that the harmonic 
measures of the two cavities in figure 4 differ by a factor c, and satisfy p(B')  = c p ( B ) .  

Now the probability for the Brownian point to enter E' is A times larger than the 
probability for it to enter B. On the other hand, the probability for the Brownian point 
to stick somewhere on B', conditional to its entering E', is the same for both E' and 
B. So p ( B ' )  = + ( E )  [24]; this shows c = A. 

Thus, the densities of the harmonic measure in B and B' are identical, to a spatial 
scale transformation; this shows that dp'(t') = dp(t'/A). 

4.1. Static local singularities 

It is well known that the density d p  has power law singularities at the folds B'(O), 
B'(L'), B'(2L') and B'(3L'). In a region s around a tip such as B'(O), where the internal 
angle is 6 ( = ~ / 2 ) ,  the harmonic measure scales like s*, with a' = n/(2a-9) .  At B'(0) 
and B'(3L'), the density is m (G < l ) ,  while at the other two folds it is 0 (a' > 1). The 
exponent a' is called the local Holder. 

These singularities are static, because they are not related to a development of the 
boundary, and local, because only the internal angle is relevant, while the size of the 
fold is irrelevant; a fold in an otherwise differentiable boundary, however smal1,gives 
rise to a local singularity in its harmonic measure. 

In the study of the self-similarity of the harmonic measure on a growing fractal 
boundary, in general, one is not interested in such local singularities. Of interest are 
singularities in the harmonic measure which are due to the interaction between a 
growing (random) fractal boundary and the Laplacian potential. 

4.2. Dynamic singularities and regularization 

If, instead of K, we had examined a DLA boundary, its singularities would have shown 
up dynamically, i.e. as functions of the number of atoms in the cluster. However, in 
order to clearly detect these singularities, the measure has to first he regularized to 
eliminate the divergences in its density due to local singularities. 

Our regularization scheme is as follows. Denote the harmonic measure of a segment 
E ( [ [ , ,  t J )  by p(to, t , ) .  Given E >0, the €-regularized harmonic density at boundary 
point E (  1 )  is defined as 

Thus, the regularized density dp(E) is such that the local Holder 

In!:'" dpa( t )  
a ( t )= l im  

r-o Inx 
(3) 

satisfies a ( l )  = 1 everywhere (see appendix 1) and is normalized so that d p ( t )  = 1. 
The only singularities that can arise in the regularized measure are due to the development 
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of the sfructure as L increases. For fixed regularization parameter, the singularity at a 
given point, e.g. at the tip B(O), appears in the behaviour of the harmonic density 
dfi,(O) - L-“ as a function of the size L of the structure. Appendix 2 describes a simple 
example. 

Let P(a) d a  denote the probability that, given a randomly picked point f on the 
boundary, the density-Holder a ( t )  = -log dp( f )  lies between a and a+da. From the 
fact that the densities on both cavities E and E’  are the same, i.e. dp‘(f’) =dp(f’/A). 
an important consequence follows: the contributions of E and E’ fo  the probability 
densi tyP(a)da areidentical. Thus, Pto,(a)= Ps(a )+P’ , , (u )+P , . , , (o ) ,  with P’,(a’)= 
P,(a’). (See appendix 3 for proof.) 

Denote by N ( a ,  a +dol) the number of sites with Holders between a and a +da. 
Figure 6 shows numerical estimates for In N,(a, a +do) ,  In N,(a, a +da) ,  and 
In N, , , (a ,a+du)  (circles), and the sum In(N,+N,.) (squares). Denote by 4, the 
solution of the discrete Laplace equation at nearest neighbour i. Then taking the lattice 
constant S = 1, the quantities dfi(i) = 4JX, 4,, where the sum runs over the total 
boundary, are estimates of the harmonic density at i. The as in figure 6 are density- 
Holders a = -log(dp(i)) regularized on a lattice, with E = 8. The numerical estimates 
for p ( B )  and + ( E ’ )  are 0.20 and 0.36, respectively. The ratio between the two is thus 
close to the theoretical result p( E ’ ) / p ( E )  = A = 2. The same ratio is found between 
Ns and Ns., except for deviations at the tails, which are affected by the singularities 
at the folds; these singularities are better articulated in E’ than in E. The bump to the 
left of the graph of In N,,, (circles) is due to the horizontal unscreened lines connecting 
the two cavities; it is of course absent from the graph In(NB+ NR.)  (squares). 

Figure 6. The curve marked with squares is the logarithm of the number density In N ( n )  
of densityH6iders o. = -In dp. of the total boundary in figure 4. The bottom curve is the 
contribution NB from the small fjord 8, and the next higher curve is N... These curves 
are identical modulo A = 2, i.e. Nw = 2N,. This illustrates that two fjords which are identical 
modulo a scale transformation A have the same contribution, modulo a weighing factor, 
to t h e f ( o )  curve. The curve marked in circles is the addition of these contributions. The 
difference between the circles and the squares is the contribution of the horizontal pieces 
joining the cavities. 
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5. Size and nesting level of a fjord 

In  the construction of K that is shown in figure 1 all fjords of a certain size are added 
at the same time, i.e. they belong to the same (cascade) generation. This relates the 
age of a fjord, defined by the cascade generation number, and its size. There is, however, 
an alternative hierarchical categorization based on the nesting of fjords within fjords. 
The related nesting number n, is the number of higher-generation fjords the potential 
field has to cross in coming from the outside towards a subfjord, plus 1. For a fjord 
with expansion 0, u 1 a 2 . .  . uk, with ai =0, I ,  2, 3, 4, the cascade generation number is 
n, = k, and the nesting number n, is equal to 1 plus the number of digits 1, 2 or 3. 

The multiplicative process appears in its most elementary form in the subset of 
fjords having only digits 1, 2 and 3. Such fjords satisfy n,= n, .  Thus,  the absolute 
value of the base 3 logarithm of the size 3-"* of a subfjord is equal to n, ,  making it 
eoual to the number of stages in the multiplicative process. Thus, the alternative Holder 
defined by a =-In dp/ln(size) r5-71, is proportional to the average number of stripes 
per subfjord through which the electric field line passes in figure 7. Note that for stripe 
counting to make sense one should avoid boundary details such as the folds, which 
interfere with the density, but are irrelevant. Therefore, stripe counting is started at 
some fixed positive distance from the boundary; this distance must be smaller than 
the smallest details in the boundary, but must not be too small. 

Clearly, the average number of stripes a is largest for the fjord with expansion 
0.22.. . 2  and smallest for the fjords 0 . 1 1 . .  , 1 and 0.33.. . 3 .  The as follow a skew 
binomial distribution ranging between these two extremes. The smallest harmonic 
measure on a linearly self-similar curve will always be at the bottom of one of the 
fjords with the maximum nesting number n, ,  The reason is that after the maximum 

C J G Everts2 and B B Mandelbrot 

Figure 7. Electric field lines around the square Koch tree, also called lines of force or 
Current lines. Repulsive massless charged particle are homogeneously distributed along 
the surface a l  the square Koch tree, and then released. This picture is a rendering of the 
logarithm of the density of particles passing through a point an their way 10 infinity for 
an n , = 5  prefractal square Koch tree. This is not the customary representation; however, 
we have found it more useful in illuminating the structure of the problem. It has been 
especially powerful in the case of current lines in DLA POI. 
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amount of zebra stripes added in a region of the boundary has been modified by the 
addition of a fjord, it always takes the same value, because the added fjords have the 
same shape modulo a scale transformation. For K, this smallest harmonic measure is 
always at the bottom of the oldest fjord 0, namely in 0.22 . . . 2  (a notion of age is 
defined in section 7). 

When a fjord's expansion also involves the digits 0 and 4, the multiplicative 
mechanism is less apparent. The logarithm of such a fjords size is not related to n., 
which in the above scheme was the number of multiplicative states. At cascade 
generation n, there are 

fjords of size 3 - " ~  with n,  = k Yet, the conventionally normalized Holder (I/ln(size) - 
n, = 1. There are 2"=-' such smallest cavities. All are located in the top row, and connect 
directly with the empty upper-half plane. From the study of the situation in figure 4, 
it follows that (if the external circumstances were the same) the harmonic density in 
such a cavity would be the same as in cavity 0 in the prefractal stage n.= 1 of K. Thus, 
the normalized density-Holders would converge to 0. However, the external circum- 
stances are not the same. The n, = 1 cavities move closer-by an amount of 3-".-to 
the power law singularities in the folds in the envelope of the fractal boundary. 
Therefore, the normalized density-Holders converge to the local Holder;. (I =$ [25] ,  
corresponding to the internal angle 5712 of these folds. 

A similar coexistence of many different levels of fjord nesting within one growth 
stage (i.e. cascade generation) is also present in DLA. 

E: ' )  ~ti!I ~EZLSS s ~ i i s ~  f ~ i  3, + ti,. T ~ s  caii be Ciusimied with the extreme C B S ~ S  where 

6. The limit distribution f(n) for the Holder n on a square Koch tree 

Given a structure like the prefractals in figure 1, the calculation of the harmonic 
measure through the Laplacian requires a metric. The measure itself is independent 
of the metric. Its (regularized) density, however, does depend on the metric, and thus 
on the size of the object. 

The development of the boundary, which we expect gives rise to a multiplicative 
process, necessarily involves either (i)  the creation of a new structure on larger scales, 
or (ii) the creation of a new structure on smaller scales, or (iii) both. Knowledge of 
both the shapes and sizes of different stages in the development of a boundary are 
therefore necessary for a quantitative analysis of the multifractal properties of its 
harmonic mC1S"rP. 

In the case of DLA, the different stages and their sizes are linked through growth. 
In the square Koch tree K, the geometric cascade could have been interpreted in either 
of the three ways that have been mentioned. Since we want the point of view closest 
to growing DLA boundaries, we interpret the cascade as growth, i.e. the creation of 
structure on larger scales. 

Thus, the horizontal sizes of the nth (=n,th) stages of the cascade, as shown in 
figures 2(a ) - ( c ) ,  scale like 3". For convenience, we will take this size to be L(n) =3". 
In all the cases shown in figure 2, the lattice used in the numerical estimate of the 
electrostatic potential was 729 x 700 = 36 x 700. The absolute size of the lattice constant 
was therefore S( n) = 3"/36 = 3"-6, n = 1,. . . , 5 .  
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-1.5 ' I I I I 
I 2 3 4 

CY = -In + ( ~ ) / l n ~ ( n )  

Figures. Cramerplot, C.(a)=ln,,., P.(ol)versusol,oftheprababilitydensities P.(n)du 
of the HSlderr of the regularized harmonic densities on the stages ne= 2 . 3 . 4  and 5 of the 
cascade in figure 1. The n, = 5 plot is marked with squares. The convergence is rapid, in 
the sense that the n, = 4 and 5 plots are nearly identical. The C.(a) is expected to converge 
ultimately to a smooth n -shaped curve C ( n ) ,  which is identical to f(m)- 0, where 
D=In5/ ln3 .  

U i 
2 4 

c y = -  In dp/ lnL(n)  

Figure 9. This is the same plot as in figure 8, except that the harmonic density is unregular- 
ired. The convergence is much less rapid. The maximum Hblder in the n. = 2 stage is much 
larger than that of the more asymptotic state nc= 5. This is due to an overaniculation of 
fold singularities, such as the one to the left of the symbol 0.14 in figure 1. This was avoided 
in figure 8 by using regularization. 
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An estimate ofthe regularized density o n  the boundary is obtained by first computing 
the electrostatic potential 4; at the lattice nearest neighbours of the structure. Then 
the site probability p( i )  = $;/Xj $j is an estimate of the harmonic measure for that 
subset of size S(n) of the boundary, which is a nearest neighbour of site i. Then the 
E = kS(n) regularized density dp.(i) at site i is 

(4) 

The normalized density-Holders of this regularized density are defined as 

-logdp,(i) 1 
log L ( n )  n 

a ; ( € )  = = --log,dp,(i). 

The choice of E is extremely important. This is very clearly illustrated by the Holders 
of the harmonic measure on the first stage of the cascade shown in figures 2(a) or 5.  
The distribution of the corresponding Holders, shown for finite S in figure 6, is supposed 
to give information on the geometry of this stage. In the continuum limit S + 0, without 
regularization (i.e. in the case E = S), the densities at the four folds defining the square 
cavity will either approach 0 or m. Thus the distribution of the Holders in figure 6 
would be distorted by the singular contribution of these folds. At this stage it is the 
density at the centre bottom of the cavity that is related to its shape, and not the density 
in the lower-left or -right corner of the cavity. Their singular contributions to the 
densities of Holders are easily removed by regularization. Appendix 2 describes an 
example of regularization for a needle-shaped boundary. The natural choice for the 
regularization parameter E is the size of the smallest relevant geometric detail in the 
boundary. In the present case, that means E = 1; i.e. k = I/ S ( n )  in equation (4). 

of the Holders for stages n = 2 ,  3, 4, 5, with ~ = l .  The ordinate is C,(a)= 
In P.(a)/ln L ( n ) .  The harmonic measure on  a linearly self-similar boundary is known 
to he a restricted multifractal [11-13], hence one expects C,(n) to converge to a limit 
C ( a )  =f(a) - 1 as n + m. This convergence is clearly visible in the figure. 

In order to see the effect of the regularization, we have plotted in figure 9 the results 
for E = 6. The left-most and right-most tails are now distorted by the contributions of 
the unregularized local singularities at the folds. 

Since the above analysis is based on the density, rather than  on 'site probabilities', 
the results are independent of the lattice used to estimate the Laplacian potential. As 
has been demonstrated, different lattice constants can be used at different stages of 
the cascade, while allowing the results to be combined. Of course, this is only true as 
long as the lattice constants used are smaller than the smallest relevant length scale 
on each of the boundaries. 

I . .C^ . . -^O ... ̂^L -.... L - o - . . - l - - . . , , ~ - - - r ,  , r b - C * L  ---- l.-L:,:...A---:.:-- " ,.,A. 
L11 l l g U l G  0, WC: J U U W  L L L C \ r L P L L L G l  LULlPpbC LA, L V J V L  LLLC pLUU*UllLLy UCllhlllCI m\U) UU 

7. Random fractal boundaries and DLA 

To facilitate the comparison of K with DLA i t  is best to interpret it in terms of growth 
as shown in figure 10. At each time step I, one bond of size 1 is added to both the left 
and right halves ofthe 'cluster'. The time steps t ,  = (5" - 1)/2 correspond to the different 
generations n, = n of the geometric cascade discussed in the previous sections. This 
process makes K 'grow' by the addition of bonds in the 'growth zone', which is the 
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U 1 

t=O 
Figure 10. The first four stages of a growing version of the square Koch tree. At each 
subsequent time step a new bond is added to the left and right halves of the structure. 
This is done in such B manner that the geometric cascade stages n, of figure 1 are recovered 
after ( 5 " ~ -  l ) / Z  time steps. 

most outward (highest) region of the cluster. In that region, small fjords cluster in a 
hierarchical fashion, thereby creating increasingly larger fjords. 

Let the age of a fjord x be N - I,, where N is the number of time steps in the 
whole set (i.e. number of bonds divided by 2), and I, is the aggregation time of the 
first-added bond defining fjord x. The fjord of largest Euclidean size is very old, but 
includes subfjords of a variety of ages. 

This definition of age is also applicable to DLA, and establishes no relation between 
the age and size of fjords. One finds young small fjords in the growth region, and old 
small fjords decorating the deep interior of the largest fjords. Also, the nesting number 
of a fjord is not determined by either its age or size. Young small fjords in the growing 
zone and oid smaii fjords at the bottom of iarge fjords may have the same smaii vaiues 
of n,. For any size not too close to the overall size of the complete boundary, fjords 
come with a variety of 11,s and ages. 

With these notions it becomes clear that (except for extreme cases) the harmonic 
measure of a subset of K is not a simple function of its age, size or location. In the 
square Koch tree the absolute smallest harmonic density is located in the smallest 
fjord having the largest n,. This fjord is the oldest, and is located at  the bottom of the 
deepest fjord. On the other hand, the absolute largest harmonic density is associated 
with younger ages and n, = 0. This tendency of increasing spatial localization when 
going to extremes is, of course, typical of deterministic multiplicatively generated 
multifractal measures. 

In DLA, the picture is very similar. The cluster grows almost exclusively by the 
addition of atoms at the outer unscreened regions, resulting in a hierarchy of fjords. 
However, the hierarchy is no longer strict. This is best illustrated by comparing the 
Laplacian tree in figure 2 ( c )  with the one for cylindrical on-lattice DLA in figure 3 of 
[9]. Needless to say, the Laplacian tree of a DLA is not regular at all. Nevertheless, 
one can clearly distinguish an increasingly narrowing branched Laplacian tree structure, 
consisting of mainstreams of zebra stacks with near-parallel walls. It is obvious from 
the randomness of the DLA boundary and of the complementary Laplacian tree that 
an underlying multiplicative process would be genuinely random. The observation that 
a young fjord, for which the nesting number is small, can have the smallest harmonic 
density on the whole DLA boundary [9,10,21] implies that the multiplier distribution 
of the associated random multiplicative process used in modelling the measure should 
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he such that an interval having a large measure at some late stage of the growth cascade 
can, in just one stage, acquire a subinterval having the smallest measure on the whole 
support. Such a multiplier distribution seems to indeed apply to DLA [lo, 111. 

This study of the Laplacian potential field in interaction with the linearly self-similar 
Koch tree clarifies the applicability of the notions of multiplicative cascades and the 
Holder a in the description, modelling and understanding of the multifractality of the 
harmonic measure on linearly self-similar boundaries. These concepts have always 
been featured in the theory of multifractals, but are given additional meaning in terms 
of the mathematics and physics of the specific problem at hand. There have been many 
attempts to apply the theory of multifractals to the harmonic measure on DLA houn- 
daries. This paper does not pretend to have shown exactly how to transfer what was 
found for the Koch tree to DLA. Nor does it pretend to give any clues as to why DLA 
is fractal [ 1 7 ] .  However, it should give a clue as to how the geometry of the DLA 
boundary gives rise to a multifractal harmonic measure. 

Appendix 1. Smoothness of the regularized density 

This appendix shows why the local Holder associated with the regularized density of 
the harmonic measure in equation (3), is 1 everywhere. The reason is that the measure 
is non-atomic: there are no points on the boundary with positive harmonic measure. 
This insures that the regularized density is continuous, and that its integral is continuous 
and at least once differentiable. If we denote this integral J:'"dpL,(f) by I , ( x ) ,  then 
a ( t )  = 1 follows from l t ( x ) = x I : ( 0 )  for x(< 1.  

For a more detailed proof we use the following slightly modified definition of the 
regularized density, dp,(t) = p(t, ~ + E ) / E .  The integral in the definition (equation (3)) 
of the local Holder, I ( x ) = j i  dpe(t) ,  can he rewritten as 

for X < E .  So ( x / E ) ~ ( x . ,  E ) <  r ( x ) s ( ~ / ~ ) ( p ( O ,  x ) + p ( O ,  E ) + ~ ( E ,  E + x ) ) .  Where x. < 
E is an arbitrary upper hound to x. Since the measure is non-atomic, the terms p(0, x) 
and p ( ~ ,  E + x )  can he made arbitrarily small with respect to p(0, E )  for small enough 
x, and it follows that a(0) = 1. The result holds for all points of the boundary, since 
the origin is arbitrary. 

Appendix 2. Regularizing the harmonic measure on a needle 

The density of the harmonic measure on the half line x E [0, m) in the Euclidean plane 
has local Holder 1 everywhere, except for the power law singularity of local Holder 
amin = f  at the origin (0,O). The density near the origin is of the form 

dp(x)  = a m i n L ~ " m m n ~ " m x ~ C '  

where an upper cut-off L, the size of the needle, has been introduced. Thus the 
E-regularized density dpe at x is 
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Therefore, the normalized density-Holder at the origin of the singularity is 

C J G Euertsz and B B Mandelbrot 

In E 
a,(O) = -InL dp.(O) = ami,+(1 - a,!") -. In L 

This shows that, in the absence of regularization, i.e. E = 0, the Holder would diverge, 
and the effect of increasing L would be invisible. For finite e, the maximum Holder 
ae(0) converges to ami8 =f  for L+ 00. It also follows that the speed of the convergence 
depends on E. 

Appendix 3. Equivalence of the density of n on congruent boundaries 

In order to prove that P;.(n') = Pfl(a') in section 4.2, let us coarse grain both B and 
B' in figure 4 with segments of size E and E ' =  AE, respectively. The harmonic measure 
p,(i) and pl.(i) of each of the corresponding segments on B and E' will differ by a 
factor A: p:,(i) = Ape(i). Therefore their coarse-grained densities are the same, i.e., 
dp'(i) = pL:.(i)/E'=ApL,(i)/&'=dp(i), and thus are the coarse-grained density-Holders 
a =-logdpL, and a'=-logdpL:,. Now, let P,(a) be the probability density of the 
Holders a, i.e. 

N ( E ,  a, a + d a )  
number of segments 

PE(.) d a  = (7) 

where N ( E ,  a, a + d a )  is the number of segments of size E with Holders between a 
and a + d a .  (Note that, in the last paragraph of section 4.2, E is equal to the lattice 
constant, and is not explicitly shown.) We then define PB(a)=lim,,,P.(a). From a 
similar definition for E' it immediately follows that P , ( a )  d a  = P: . (a)  d a  and, there- 
fore, P',,(a') = Pfl(a'). 
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